skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vince, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to its peculiar and highly variable nature, the blazar 3C 454.3 has been extensively monitored by the WEBT team. Here, we present for the first time these long-term optical flux and color variability results using data acquired inB,V,R, andIbands over a time span of about two decades. We include data from WEBT collaborators and public archives such as SMARTS, Steward Observatory, and Zwicky Transient Facility. The data are binned and segmented to study the source over this long term when more regular sampling was available. During our study, the long-term spectral variability reveals a redder-when-brighter trend, which, however, stabilizes at a particular brightness cutoff of ∼14.5 mag in theIband, after which it saturates and evolves into a complex state. This trend indicates increasing dominance of jet emission over accretion disk (AD) emission until jet emission completely dominates. Plots of the variation in spectral index (followingFν∝ν−α) reveal a bimodal distribution using a one-day binning. These correlate with two extreme phases of 3C 454.3, an outburst or high-flux state and a quiescent or low-flux state, which are respectively jet- and AD-dominated. We have also conducted intraday variability studies of nine light curves and found that six of them are variable. Discrete correlation function analysis between different pairs of optical wave bands peaks at zero lags, indicating cospatial emission in different optical bands. 
    more » « less
  2. Context.Blazars are beamed active galactic nuclei (AGNs) known for their strong multi-wavelength variability on timescales ranging from years down to minutes. Many different models have been proposed to explain this variability. Aims.We aim to investigate the suitability of the twisting jet model presented in previous works to explain the multi-wavelength behaviour of BL Lacertae, the prototype of one of the blazar classes. According to this model, the jet is inhomogeneous, curved, and twisting, and the long-term variability is due to changes in the Doppler factor due to variations in the orientation of the jet-emitting regions. Methods.We analysed optical data of the source obtained during monitoring campaigns organised by the Whole Earth Blazar Telescope (WEBT) in 2019–2022, together with radio data from the WEBT and other teams, andγ-ray data from theFermisatellite. In this period, BL Lacertae underwent an extraordinary activity phase, reaching its historical optical andγ-ray brightness maxima. Results.The application of the twisting jet model to the source light curves allows us to infer the wiggling motion of the optical, radio, andγ-ray jet-emitting regions. The optical-radio correlation shows that the changes in the radio viewing angle follow those in the optical viewing angle by about 120 days, and it suggests that the jet is composed of plasma filaments, which is in agreement with some radio high-resolution observations of other sources. Theγ-ray emitting region is found to be co-spatial with the optical one, and the analysis of theγ-optical correlation is consistent with both the geometric interpretation and a synchrotron self-Compton (SSC) origin of the high-energy photons. Conclusions.We propose a geometric scenario where the jet is made up of a pair of emitting plasma filaments in a sort of double-helix curved rotating structure, whose wiggling motion produces changes in the Doppler beaming and can thus explain the observed multi-wavelength long-term variability. 
    more » « less
  3. ABSTRACT In 2021 BL Lacertae underwent an extraordinary activity phase, which was intensively followed by the Whole Earth Blazar Telescope (WEBT) Collaboration. We present the WEBT optical data in the BVRI bands acquired at 36 observatories around the world. In mid-2021 the source showed its historical maximum, with R = 11.14. The light curves display many episodes of intraday variability, whose amplitude increases with source brightness, in agreement with a geometrical interpretation of the long-term flux behaviour. This is also supported by the long-term spectral variability, with an almost achromatic trend with brightness. In contrast, short-term variations are found to be strongly chromatic and are ascribed to energetic processes in the jet. We also analyse the optical polarimetric behaviour, finding evidence of a strong correlation between the intrinsic fast variations in flux density and those in polarization degree, with a time delay of about 13 h. This suggests a common physical origin. The overall behaviour of the source can be interpreted as the result of two mechanisms: variability on time-scales greater than several days is likely produced by orientation effects, while either shock waves propagating in the jet, or magnetic reconnection, possibly induced by kink instabilities in the jet, can explain variability on shorter time-scales. The latter scenario could also account for the appearance of quasi-periodic oscillations, with periods from a few days to a few hours, during outbursts, when the jet is more closely aligned with our line of sight and the time-scales are shortened by relativistic effects. 
    more » « less
  4. Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I  = 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M ⊙ and 0.36 ± 0.03 M ⊙ at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes. 
    more » « less